Machine Learning Aided Engineering of Hydrolases for PET Depolymerization

Geyer, R., Jambeck, JR & Law, KL Production, Use, and Fate of All Plastics Ever Made. Science. Adv. 3e1700782 (2017).
Santos, RG, Machovsky-Capuska, GE & Andrades, R. Plastic ingestion as an evolutionary trap: towards a holistic understanding. Science 37356–60 (2021).
MacLeod, M., Arp, HPH, Tekman, MB, and Jahnke, A. The global threat of plastic pollution. Science 37361–65 (2021).
Chen, CC, Dai, L., Ma, L. & Guo, RT Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4114–126 (2020).
George, N. & Kurian, T. Recent developments in the chemical recycling of post-consumer polyethylene terephthalate waste. Eng. ind. Chem. Res. 5314185–14198 (2014).
Simon, N. et al. A binding global agreement to address the life cycle of plastics. Science 37343–47 (2021).
Kawai, F., Kawabata, T. & Oda, M. Current knowledge on enzymatic degradation of PET and its possible application to waste stream management and other fields. Appl. Microbiol. Biotechnol. 1034253–4268 (2019).
Sarah, K. & Gloria, R. Achieving a circular bioeconomy for plastics. Science 37349-50 (2021).
Ru, J., Huo, Y. & Yang, Y. Microbial degradation and recovery of plastic waste. Before. Microbiol. https://doi.org/10.3389/fmicb.2020.00442 (2020).
Ellis, LD et al. Chemical and biological catalysis for recycling and upcycling plastics. Nat. catal. 4539-556 (2021).
Taniguchi, I. et al. Biodegradation of PET: current situation and application aspects. ACS Catal. https://doi.org/10.1021/acscatal.8b05171 (2019).
Tournier, V. et al. A PET depolymerase designed to break down and recycle plastic bottles. Nature 580216-219 (2020).
Inderthal, H., Tai, SL & Harrison, STL Non-hydrolyzable plastics – an interdisciplinary look at the bio-oxidation of plastics. Biotechnol trends. 3912–23 (2021).
Yoshida, S. et al. Bacteria that degrades and assimilates poly(ethylene terephthalate). Science 3511196-1199 (2016).
Chen, CC et al. General characteristics to improve the enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nat. catal. https://doi.org/10.1038/s41929-021-00616-y (2021).
Worm, B., Lotze, HK, Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Ann. Rev. Approx. Resource.https://doi.org/10.1146/annurev-environ-102016-060700 (2017).
Sons, HF et al. Rational engineering of thermostable PETase proteins from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 93519-3526 (2019).
Austin, HP et al. Characterization and engineering of an aromatic plastic degrading polyesterase. proc. Natl Acad. Science. UNITED STATES 115E4350–E4357 (2018).
Joo, S. et al. Structural overview of the molecular mechanism of polyethylene terephthalate degradation. Nat. Commmon. 9382 (2018).
Han, X et al. Structural overview of the catalytic mechanism of PET hydrolase. Nat. Commmon. 82106 (2017).
Furukawa, M., Kawakami, N., Oda, K. & Miyamoto, K. Acceleration of enzymatic degradation of poly(ethylene terephthalate) by surface coating with anionic surfactants. Chem. Sus. Chem. 114018–4025 (2018).
Cui, Y. et al. Computational redesign of a PETase for plastic biodegradation under ambient conditions by the GRAPE strategy. ACS Catal. https://doi.org/10.1021/acscatal.0c05126 (2021).
Chen, K., Hu, Y., Dong, X., and Sun, Y. Molecular insights into the enhanced performance of alkylated petase in PET degradation. ACS Catal. 117358–7370 (2021).
Shroff, R. et al. Discovery of novel gain-of-function mutations guided by structure-based deep learning. Synth ACS. Biol. 92927-2935 (2020).
Kawai, F. et al. A novel that2+– activated thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl. Microbiol. Biotechnol. 9810053–10064 (2014).
Weissmann, D. Applied Plastics Engineering Handbook: Processing, Materials, and Applications 2nd edn (ed. Kutz, M.) 717–741 (William Andrew Publishing, 2017).
Wallace, NE et al. The highly crystalline PET found in plastic water bottles does not support the growth of PETase-producing bacteria Ideonella sakaiensis. Approximately. Microbiol. representing 12578-582 (2020).
Wei, R. & Zimmermann, W. Microbial enzymes for recycling recalcitrant petroleum-based plastics: where do we stand? Microb. Biotechnol. ten1308-1322 (2017).
Kawai, F., Kawabata, T. & Oda, M. Current status and outlook for polyethylene terephthalate hydrolases available for biorecycling. ACS maintenance. Chem. Eng. 88894–8908 (2020).
Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Enzymol methods. 276307–326 (1997).
Emsley, P. & Cowtan, K. Coot: Modeling tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallologist. 602126-2132 (2004).
Liebschner, D. et al. Determination of macromolecular structure by X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D, Structure. Biol. 75861–877 (2019).
Fujita, M. et al. Cloning and nucleotide sequence of the maltotetraose-forming amylase gene (amyP) of Pseudomonas stutzeri MO-19. J. Bacteriol. 1711333-1339 (1989).
Leonard, SP et al. Genetic Engineering of Bee Gut Microbiome Bacteria with a Toolbox for Modular Broad Host-Range Plasmid Assembly. Synth ACS. Biol. 71279-1290 (2018).