A nanopore interface for higher bandwidth DNA computation

  • Zhang, DY, Turberfield, AJ, Yurke, B. & Winfree, E. Engineering DNA-catalyzed entropy-induced reactions and networks. Science. (80-.) 3181121–1125 (2007).

    Google Scholar CAS Announcements

  • Qian, L. & Winfree, E. Computational Scaling of Digital Circuits with DNA Strand Displacement Cascades. Science. (80-.) 3321196-1201 (2011).

    Google Scholar CAS Announcements

  • Seelig, G., Soloveichik, D., Zhang, DY, and Winfree, E. Enzyme-free nucleic acid logic circuits. Science. (80-.) 3141585-1588 (2006).

    Google Scholar CAS Announcements

  • Cherry, KM & Qian, L. Scaling Molecular Pattern Recognition with DNA-Based Win-Win Neural Networks. Nature 559370–388 (2018).

    ADS CAS PubMed Google Scholar

  • Soloveichik, D., Seelig, G. & Winfree, E. DNA as a Universal Substrate for Chemical Kinetics. proc. Natl Acad. Science. UNITED STATES. 1075393–5398 (2010).

    ADS CAS PubMed PubMed Central Google Scholar

  • Chen, YJ et al. Programmable chemical controllers made from DNA. Nat. Nanotechnology. 8755–762 (2013).

    ADS CAS PubMed PubMed Central Google Scholar

  • Srinivas, N., Parkin, J., Seelig, G., Winfree, E. & Soloveichik, D. Dynamic nucleic acid systems without enzymes. Science (80-.). 358(2017) 10.1126/science.aal2052.

  • Zhang, C. et al. Cancer diagnosis with DNA molecular calculation. Nat. Nanotechnology. 2020 158 15709–715 (2020).

    CAS Google Scholar

  • Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475368–372 (2011).

    CAS PubMed Google Scholar

  • Zhang, DY & Winfree, E. Controlling DNA strand displacement kinetics using toe swapping. Jam. Chem. Soc. 13117303–17314 (2009).

    CAS PubMed Google Scholar

  • Zhang, DY & Seelig, G. Dynamic DNA nanotechnology using strand displacement reactions. Nat. Chem. 3103–113 (2011).

    CAS PubMed Google Scholar

  • Yurke, B., Turberfield, AJ, Mills, AP, Simmel, FC & Neumann, JL A DNA-powered molecular machine made of DNA. Nat 2000 4066796 406605–608 (2000).

    CAS Google Scholar

  • Qiu, X., Guo, J., Xu, J. & Hildebrandt, N. Three-dimensional FRET multiplexing for DNA quantitation with attomolar detection limits. J.Phys. Chem. Lett. 94379–4384 (2018).

    CAS PubMed Google Scholar

  • Y, W. et al. Rapid sequential in situ multiplexing with DNA exchange imaging in neuronal cells and tissues. Nano Lett. 176131–6139 (2017).

    Google Scholar announcements

  • Guo, J., Wang, S., Dai, N., Teo, YN & Kool, ET Multispectral labeling of antibodies with polyfluorophores on a DNA backbone and application in cell imaging. proc. Natl Acad. Science. UNITED STATES 1083493–3498 (2011).

    ADS CAS PubMed PubMed Central Google Scholar

  • Ju, J., Ruan, C., Fuller, CW, Glazer, AN & Mathies RA Fluorescence energy transfer dye-labeled primers for DNA sequencing and analysis. proc. Natl Acad. Science. UNITED STATES 924347–4351 (1995).

    ADS CAS PubMed PubMed Central Google Scholar

  • Ashkenasy, N., Sánchez-Quesada, J., Bayley, H. & Ghadiri, MR Recognizing a single base in an individual DNA strand: a step towards DNA sequencing in nanopores. Angelw. Chem. – Int. Ed. 441401-1404 (2005).

    CAS Google Scholar

  • Stoddart, D., Heron, AJ, Mikhailova, E., Maglia, G. & Bayley, H. Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. proc. Natl Acad. Science. UNITED STATES. 1067702–7707 (2009).

    ADS CAS PubMed PubMed Central Google Scholar

  • Gu, LQ, Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic detection of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398686–690 (1999).

    ADS CAS PubMed Google Scholar

  • Rotem, D., Jayasinghe, L., Salichou, M. & Bayley, H. Protein detection by aptamer-equipped nanopores. Jam. Chem. Soc. 1342781-2787 (2012).

    CAS PubMed PubMed Central Google Scholar

  • Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38176-181 (2020).

    CAS PubMed Google Scholar

  • Jain, M., Olsen, HE, Paten, B. & Akeson, M. The Oxford Nanopore MinION: Delivering Nanopore Sequencing to the Genomics Community. Genome Biol. 171–11 (2016).

    Google Scholar

  • Ding, T et al. Nanopore based analysis assisted by DNA nanotechnology. Nucleic Acids Res. 482791–2806 (2020).

    CAS PubMed PubMed Central Google Scholar

  • Ohara, M., Takinoue, M. & Kawano, R. Logical Nanopore Operation with DNA to RNA Transcription in a Droplet System. Synth ACS. Biol. 61427-1432 (2017).

    CAS PubMed Google Scholar

  • Ohara, M., Sekiya, Y. & Kawano, R. Hairpin DNA unzipping analysis using a biological nanopore array. Electrochemistry 84338-341 (2016).

    CAS Google Scholar

  • Yasuga, H. et al. Logic gate operation by DNA translocation through biological nanopores. PLoS One 11e0149667 (2016).

    PubMed PubMed Central Google Scholar

  • Zhu, Z., Wu, R. & Li, B. Exploration of solid-state nanopores in the characterization of reaction mixtures generated from catalytic DNA assembly circuitry. Chem. Science. ten1953-1961 (2019).

    CAS PubMed Google Scholar

  • Kong, J., Zhu, J. & Keyser, UF Single Molecule Based SNP Detection Using Engineered DNA Carriers and Solid State Nanopores. Chem. Common. 53436–439 (2016).

    Google Scholar

  • Wang, Y., Zheng, D., Tan, Q., Wang, MX & Gu, LQ Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnology. 6668–674 (2011).

    ADS CAS PubMed PubMed Central Google Scholar

  • Tian, ​​K., He, Z., Wang, Y., Chen, SJ & Gu, LQ Design of a polycationic probe for simultaneous enrichment and detection of microRNAs in a nanopore. ACS Nano seven3962–3969 (2013).

    CAS PubMed PubMed Central Google Scholar

  • Zhang, X., Wang, Y., Fricke, BL & Gu, LQ Nanopore ion flow programming for encoded multiplex detection of microRNAs. ACS Nano 83444–3450 (2014).

    CAS PubMed PubMed Central Google Scholar

  • An, N., Fleming, AM, White, HS & Burrows, CJ Crown ether-electrolyte interactions enable nanopore detection of individual DNA abasic sites in single molecules. proc. Natl Acad. Science. UNITED STATES. 10911504–11509 (2012).

    ADS CAS PubMed PubMed Central Google Scholar

  • Schibel, AEP et al. Nanopore detection of 8-oxo-7,8-dihydro-2′-deoxyguanosine in immobilized single-stranded DNA via adduct formation at the site of DNA damage. Jam. Chem. Soc. 13217992–17995 (2010).

    CAS PubMed PubMed Central Google Scholar

  • Cardozo, N. et al. Multiplexed direct detection of barcoded protein reporters on a nanopore array. Nat. Biotechnol. 20211–5 (2021).

  • Chen, X. Rule-set extension of DNA circuits with associative toe activation. Jam. Chem. Soc. 134263-271 (2012).

    CAS PubMed Google Scholar

  • GitHub – nanoporetech/kmer_models: Predictive kmer models to use for development. https://github.com/nanoporetech/kmer_models.

  • He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. proc. IEEE calculation. Soc. Conf. Calculation. Screw. Pattern recognition. 2016770–778 (2016).

    Google Scholar

  • Roush, S. & Slack, FJ The let-7 family of microRNAs. Cell Biol Trends. 18505–516 (2008).

    CAS PubMed Google Scholar

  • Chen, SX & Seelig, G. A kinetic amplification mechanism designed for the discrimination of single nucleotide variants by DNA hybridization probes. Jam. Chem. Soc. 1385076–5086 (2016).

    CAS PubMed Google Scholar

  • Tabatabaei, SK et al. Expanding the molecular alphabet of DNA-based data storage systems with neural network nanopore readout processing. Nano Lett. 221905-1914 (2022).

    ADS PubMed PubMed Central Google Scholar

  • Mathé, J., Visram, H., Viasnoff, V., Rabin, Y. & Meller, A. Nanopore decompression of individual DNA hairpin molecules. Biophys. J 873205–3212 (2004).

    ADS PubMed PubMed Central Google Scholar

  • Celaya, G., Perales-Calvo, J., Muga, A., Moro, F., and Rodriguez-Larrea, D. Label-free, multiplexed, single-molecule analysis of protein-DNA complexes with nanopores. ACS Nano 115815–5825 (2017).

    CAS PubMed Google Scholar

  • Derrington, IM et al. Single-molecule subangstrom measurements of motor proteins using a nanopore. Nat. Biotechnol. 331073-1075 (2015).

    CAS PubMed PubMed Central Google Scholar

  • Adam, G. & Delbrück, M. Dimensionality reduction in biological diffusion processes. Structure. Chem. Mol. Organic. (1968) https://collections.archives.caltech.edu/repositories/2/archive_objects/20071.

  • Zhu, D. et al. Cancer-specific microRNA analysis with non-enzymatic nucleic acid circuitry. ACS Appl. Mater. interfaces 1111220–11226 (2019).

    CAS PubMed Google Scholar

  • Xie, Z., Wroblewska, L., Prochazka, L., Weiss, R. & Benenson, Y. Multi-input logic circuit based on RNAi for the identification of specific cancer cells. Science. (80-.) 3331307-1311 (2011).

    Google Scholar CAS Announcements

  • Choi, HMT et al. Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat. Biotechnol. 281208-1212 (2010).

    CAS PubMed PubMed Central Google Scholar

  • Sherry J. Basler